Developing Modules

Developing Modules Connecting to Commerce Server
1Developing Modules Connecting to Commerce Server


2Understanding the Different Types of Commerce Server APIs


2Programming with the Runtime APIs


3Agent Mode Programming with the Management APIs


5Local Mode Programming with the Management APIs


7Programming Directly to the Web Services





Understanding the Different Types of Commerce Server APIs

The various Commerce Server APIs can be categorized in two distinct ways. First, they can be categorized according to the Commerce Server system to which they provide access. In other words, there is different API for accessing the Catalog System than there is for accessing the Orders System or the Profiles System for example.

The second way in which the Commerce Server APIs can be categorized is according the context in which they are used. What are known as the runtime APIs are intended for use within Commerce Server Web applications, and provide functionality for retrieving information about products in the catalog, for adding items to a shopping basket, and so on.

What are known as the management APIs are intended for use in writing the various types of tools that business users and IT professionals use in the course of day-to-day management of the Commerce Server Web applications. The business management applications, such as the Customer and Orders Manager and the Marketing Manager, are examples of this type of tool. For the most part, the management APIs operate in two distinct modes: agent mode and local mode. Local mode provides direct, local access to the various Commerce Server systems. In this mode, your code must be running on the same computer as the Commerce Server system(s) with which it interacting. Code running in this mode has better performance than code running in agent mode.

Agent mode provides access to the various Commerce Server systems over the Internet and HTTP using the Web services that each of those systems provides. Further, and although it is technically not considered to be a management API, you can program directly to the Web services upon which the agent mode management APIs rely. Programming directly to the Commerce Server Web services is going to be appropriate in certain integration scenarios in which using the agent APIs is not straightforward or even feasible.

You can program using either local mode or agent mode, or even directly to the Web services, in both Windows client applications and in an ASP.NET applications.

The topics in this section describe and compare the various Commerce Server APIs according to the second categorization described here: runtime APIs versus the various modes of the management APIs. Within this organization, the differences between the APIs for the various Commerce Server systems are described.

Programming with the Runtime APIs

Most of the Commerce Server systems have distinct APIs for run time versus management, where a run-time API refers to an API invoked in the course of a customer using a Commerce Server Web application, and where a management API refers to an API invoked from, for example, a business management application such as the Marketing Manager, used by a business user tasked with helping run the Web application.

The exceptions to this rule are the Catalog System and the Inventory System, which in addition to having a single API for both run-time and management use, also have a single entry point in that the Inventory System API is accessed through the Catalog System API.

The run-time classes for the other Commerce Server systems, and the various run-time infrastructure classes that they share, are all found within the Microsoft.CommerceServer.Runtime namespace and its subordinate namespaces. Specifically, the namespaces for the run-time classes associated with the Marketing System, the Orders System, and the Profiles System are Microsoft.CommerceServer.Runtime.Marketing, Microsoft.CommerceServer.Runtime.Orders, and Microsoft.CommerceServer.Runtime.Profiles, respectively.

An important class for programming with the run-time APIs, found within the Microsoft.CommerceServer.Runtime namespace, is the CommerceContext class. This class, and specifically its Current property, is the entry point into the entire run-time API, and has properties that are the context objects for the various Commerce Server systems, which in turn serve as the entry points into the run-time APIs for those systems:

· The CatalogSystem property is of type CatalogContext, which serves as the entry point for the combined run-time and management API for both the Catalog System and the Inventory System.

	[image: image1.png]


Note 

	The CommerceContext class also includes the GetCatalogsForUser method, which returns the set of catalogs appropriate for the current user.

For example: ReadOnlyStringCollection catalogs = CommerceContext.Current.GetCatalogsForUser();


· The OrderSystem property is of type OrderContext, which serves as the entry point for the run-time API for the Orders System.
For example: order = CommerceContext.Current.OrderSystem.GetPurchaseOrder(userId, orderIdGuid);
· The ProfileSystem property is of type ProfileContext, which serves as the entry point for the run-time API for the Profiles System.
For example: ProfileContext profileSystem = CommerceContext.Current.ProfileSystem;
· The TargetingSystem property is of type TargetingSystemInfo, which serves as the entry point for the run-time API for the Marketing System.

Agent Mode Programming with the Management APIs

Commerce Server lets you access the management functionality of the following Commerce Server systems through what are known as the agent APIs. These use the corresponding Web services to provide the access over a network:

· Catalog System (CatalogContext)

· Inventory System (InventoryContext)

· Marketing System (MarketingContext)

· Orders System (OrderManagementContext)

· Profiles System (ProfileManagementContext)

Unlike using the Web services directly, the agent APIs provide the same object model as is available locally using the in-process APIs. When you must have remote access to the management functionality of one or more of these Commerce Server systems, programming with the agent APIs provides a somewhat friendlier programming experience than programming directly with the Web services.

	[image: image2.png]


Important 

	Whenever possible, use the agent mode management APIs instead of programming directly to the Commerce Server Web services. Programming directly to the Web services is not considered best practice for .NET programming environments.


The difference between accessing one of these Commerce Server systems using the agent APIs versus using the local APIs is in how objects of the corresponding context class (shown parenthetically earlier) are created. After you create the context class for a particular Commerce Server system, you can use it to access the full object model for that system. For more information about how to develop with the individual systems, see the following topics:

· Developing with the Catalog System 

· Developing with the Inventory System 

· Developing with the Marketing System 

· Developing with the Orders System 

· Developing with the Profiles System 

The rest of this topic summarizes how to create the various context objects so that successive operations are performed in agent mode, through the Commerce Server Web services, over the network.

Using the Catalog and Inventory Systems API in Agent Mode
In order to use the agent APIs that access both the runtime and management functionality of the Commerce Server Catalog and Inventory Systems, use the correct version of the Create factory method of the CatalogContext class. The correct version takes an instance of the CatalogServiceAgent class as its only parameter: CatalogContext.Create(CatalogServiceAgent).

	[image: image3.png]


Note 

	An obsolete version of the agent API Create factory method takes instances of the CatalogServiceAgent class and the DebugContext class as parameters: CatalogContext.Create(CatalogServiceAgent, DebugContext). You should avoid using this version.


After you have created an Agent-mode instance of the CatalogContext class, and assuming that you have an Inventory System enabled for your implementation of Commerce Server (the InventorySystemExists property is set to True), you can retrieve an Agent-mode instance of the InventoryContext class using the InventoryContext property.

Using the Marketing System Management API in Agent Mode
In order to use the agent API that accesses the management functionality of the Commerce Server Marketing System, use one of the two correct versions of the Create factory method of the MarketingContext class. The correct versions take single parameters, an instance of the MarketingServiceAgent class in one case and a String in the other case: MarketingContext.Create(MarketingServiceAgent) or MarketingContext.Create(String).

In the former case, you first create an instance of the MarketingServiceAgent class by specifying the URL of the Marketing Web service, and possibly also setting other properties. In the latter case, you specify the URL of the Marketing Web service and an instance of the MarketingServiceAgent class is created on your behalf using default property settings. Which method that you choose depends on whether you must have direct access to your MarketingServiceAgent object before creating your MarketingContext object.

For an example of using the management functionality of the Marketing System in Agent mode, see Agent Mode Programming Sample.

Using the Orders System Management API in Agent Mode
In order to use the agent API that accesses the management functionality of the Commerce Server Orders System, use the correct version of the Create factory method of the OrderManagementContext class. The correct version takes an instance of the OrderServiceAgent class as its only parameter: OrderManagementContext.Create(OrderServiceAgent).

Using the Profiles System Management API in Agent Mode
In order to use the agent API that accesses the management functionality of the Commerce Server Profiles System, use one of the three correct versions of the Create factory method of the ProfileManagementContext class. The correct versions take single parameters, an instance of the ProfilesServiceAgent class in the first case, a String in the second case, and an instance of the System.Uri class in the third case: ProfileManagementContext.Create(ProfilesServiceAgent), ProfileManagementContext.Create(String), or ProfileManagementContext.Create(Uri).

In the first case, you first create an instance of the ProfilesServiceAgent class by specifying the URL of the Profiles Web service, and possibly also setting other properties. In the second two cases, you specify the URL of the Profiles Web service (as either a String or a Uri object) and an instance of the ProfilesServiceAgent class is created on your behalf using default property settings. Which method that you choose depends on whether you must have direct access to your ProfilesServiceAgent object before creating your ProfileManagementContext object.

Local Mode Programming with the Management APIs

Commerce Server provides a way to access the management functionality of the following Commerce Server systems through more traditional, in-process APIs. These local APIs provide the best performance but do not provide the ability to run remotely across a network.

· Catalog System (CatalogContext)

· Inventory System (InventoryContext)

· Marketing System (MarketingContext)

· Orders System (OrderManagementContext)

· Profiles System (ProfileManagementContext)

The difference between accessing one of these Commerce Server systems using the local APIs versus using the agent APIs is in how objects of the corresponding context class (shown parenthetically above) are created. After you create the context class for a particular Commerce Server system, you can use it to access the full object model for that system. For more information about developing with the individual systems, see the following topics:

· Developing with the Catalog System 

· Developing with the Inventory System 

· Developing with the Marketing System 

· Developing with the Orders System 

· Developing with the Profiles System 

The remainder of this topic summarizes how to create the various context objects so that subsequent operations are performed in local mode.

Using the Catalog and Inventory Systems API in Local Mode
In order to use the local APIs that access both the run-time and management functionality of the Commerce Server Catalog and Inventory Systems, use one of the correct versions of the Create factory method of the CatalogContext class. The two correct versions both take an instance of the CatalogSiteAgent class as a parameter: CatalogContext.Create(CatalogSiteAgent) and CatalogContext.Create(CatalogSiteAgent, CacheConfiguration).

	[image: image4.png]


Note 

	An obsolete version of the local API Create factory method takes instances of the CatalogSiteAgent class and the DebugContext class as parameters: CatalogContext.Create(CatalogSiteAgent, DebugContext). You should avoid using this version.


After you have created a local-mode instance of the CatalogContext class, and assuming that you have an Inventory System enabled for your implementation of Commerce Server (the InventorySystemExists property is set to True), you can retrieve a local-mode instance of the InventoryContext class using the InventoryContext property.

Using the Marketing System Management API in Local Mode
In order to use the local API that accesses the management functionality of the Commerce Server Marketing System, use one of the three correct versions of the Create factory method of the MarketingContext class. The correct versions take multiple parameters, including the name of the Commerce Server site, two authorization parameters, and optionally, several SQL Server time-out parameters: MarketingContext.Create(String, String, AuthorizationMode) or MarketingContext.Create(String, String, AuthorizationMode, Int32, Int32) and MarketingContext.Create(String, String, AuthorizationMode, Int32, Int32, Int32, Int32).

Which method you choose depends on whether you need to set the relevant SQL Server time-out values.

For an example of using the management functionality of the Marketing System in local mode, see Local Mode Programming Sample.

Using the Orders System Management API in Local Mode
In order to use the local API for the Commerce Server Orders System, use the correct version of the Create factory method of the OrderManagementContext class. The correct version takes an instance of the OrderSiteAgent class as its only parameter: OrderManagementContext.Create(OrderSiteAgent).

Using the Profiles System Management API in Local Mode
There is no local mode access to the ProfileManagementContext class, and therefore, no local mode access to the designated management functionality of the Commerce Server Profiles System. However, you can use the classes in the Microsoft.CommerceServer.Runtime.Profiles namespace to get local mode access to much of the functionality of the Profiles System. To do so, create an instance of the ProfileContext class using one of its three constructors. All three constructors take various combinations of connection strings and profile definition catalog names, as well as an instance of the DebugContext class: ProfileContext(String, DebugContext), ProfileContext(String, String, DebugContext), or ProfileContext(String, String, String, DebugContext).

Which constructor you choose depends on which connection strings you choose to pass as parameters and whether or not you need to pass in a profile definition catalog name.

Programming Directly to the Web Services

Generally, agent mode programming is considered the best practice choice for remote access to the Commerce Server systems. However, if you have a good reason not to use the agent APIs, such as a requirement to access one or more of the relevant Commerce Server systems from a non-.NET environment, you can program directly to the Commerce Server Web services. Commerce Server lets you access the following Commerce Server systems through the Web services that those systems provide:

· Catalog System (CatalogWebService)

· Inventory System (CatalogWebService)

	[image: image5.png]


Note 

	The Catalog Web Service is used to access both the Catalog System and the Inventory System.


· Marketing System (MarketingWebService)

· Orders System (OrdersWebService)

· Profiles System (ProfilesWebService)

Using the Web service that is provided by a Commerce Server system is generally not as easy as using the equivalent agent API, in that sometimes several Web service calls are required to implement a single agent API method. Therefore, other rationales being equal, you should use the agent APIs when you need to interact with a Commerce Server system over the network. Examples of scenarios where programming directly to the Web services makes more sense than using the agent APIs include the following:

· A system implemented in Java can use the Web services to integrate with Commerce Server.

· A BizTalk application can use the Web services to retrieve Commerce Server data as part of an orchestration by using the BizTalk Web services adapter.

For more information about how to develop with the individual systems, see the following topics:

· Developing with the Catalog System 

· Developing with the Inventory System 

· Developing with the Marketing System 

· Developing with the Orders System 

· Developing with the Profiles System 

The rest of this topic summarizes how to create an instance of the various Commerce Server Web services so that you can access their methods over the network.

Using the Catalog Web Service
In order to use the Web services for the Commerce Server Catalog and Inventory Systems in the Microsoft Visual Studio 2005 project, you must add a Web reference to the Catalog Web Service. By default, the URL for the Catalog Web Service is (where localhost may be another host name if you are accessing the Catalog Web Service over the network):

http://localhost/CatalogWebService/CatalogWebService.asmx

Assuming that you use a localhost URL as shown earlier, and that you have accepted the default string "localhost" as the Web reference name in the Visual Studio Add Web Reference dialog box, you would then use the following line of code to create an instance that is named "cws", of the CatalogWebService class through which you can access the various methods of the Catalog Web Service.

localhost.CatalogWebService cws = new localhost.CatalogWebService(); 

	[image: image6.png]


Note 

	Make sure that you include a using statement for the "System.Net" namespace. It may not be added by default when you create a project in Visual Studio.


Using the Marketing Web Service
In order to use the Web services for the Commerce Server Marketing System in your Visual Studio project, you must add a Web reference to the Marketing Web Service. By default, the URL for the Marketing Web Service is (where localhost may be another host name if you are accessing the Marketing Web Service over the network):

http://localhost/MarketingWebService/MarketingWebService.asmx

Assuming that you use a localhost URL as shown earlier, and that you have accepted the default string "localhost" as the Web reference name in the Visual Studio Add Web Reference dialog box, you would then use the following line of code to create an instance that is named "mws", of the MarketingWebService class through which you can access the various methods of the Marketing Web Service.

localhost.MarketingService mws = new localhost.MarketingService(); 

	[image: image7.png]


Note 

	Make sure that you include a using statement for the "System.Net" namespace. It may not be added by default when you create a project in Visual Studio.


For an example of using the marketing Web service, see Web Service Programming Sample.

Using the Orders Web Service
In order to use the Web services for the Commerce Server Orders System in your Visual Studio project, you must add a Web reference to the Orders Web Service. By default, the URL for the Orders Web Service is (where localhost may be another host name if you are accessing the Orders Web Service over the network):

http://localhost/OrdersWebService/OrdersWebService.asmx

Assuming that you use a localhost URL as shown earlier, and that you have accepted the default string "localhost" as the Web reference name in the Visual Studio Add Web Reference dialog box, you would then use the following line of code to create an instance that is named "ows", of the OrdersWebService class through which you can access the various methods of the Orders Web Service.

localhost.OrderService ows = new localhost.OrderService();

	[image: image8.png]


Note 

	Make sure that you include a using statement for the "System.Net" namespace. It may not be added by default when you create a project in Visual Studio.


Using the Profiles Web Service
In order to use the Web services for the Commerce Server Profiles System in your Visual Studio project, you must add a Web reference to the Profiles Web Service. By default, the URL for the Profiles Web Service is (where localhost may be another host name if you are accessing the Profiles Web Service over the network):

http://localhost/ProfilesWebService/ProfilesWebService.asmx

Assuming that you use a localhost URL as shown earlier, and that you have accepted the default string "localhost" as the Web reference name in the Visual Studio Add Web Reference dialog box, you would then use the following line of code to create an instance that is named "pws", of the ProfilesWebService class through which you can access the various methods of the Profiles Web Service.

localhost.ProfilesWebService pws = new localhost.ProfilesWebService(); 

	[image: image9.png]


Note 

	Make sure that you include a using statement for the "System.Net" namespace. It may not be added by default when you create a project in Visual Studio.


	10
	Understanding the Different Types of Commerce Server APIs 



